Kharkiv national medical university Дуденко В. Г., Вдовіченко В. Ю. Топографо-морфометричні характеристики пірамід верхнього кінця нирки людини зрілого та похилого віку. Реферат




Дата конвертації20.12.2017
Розмір1,33 Mb.
УДК: 611.611:611:959:612.66

Topographo-morphometric characteristics of the human renal pyramids of the upper end at mature and elderly ages.

Dudenko V.G., Vdovichenko V. I.

Department of the operative surgery and topographic anatomy

Kharkiv national medical university

Дуденко В.Г., Вдовіченко В.Ю. Топографо-морфометричні характеристики пірамід верхнього кінця нирки людини зрілого та похилого віку.

Реферат. Для вивчення морфометрії і просторового розташування пірамід нирки людини стандартними методами анатомічного дослідження були вивчені 150 нирок людей зрілого та похилого віку обох статей. Для визначення топографії була застосована система топографічних координат, адаптована для оцінки секторної координатної топографії ниркових пірамід в локальній системі координат нирки людини. Була запропонована наступна класифікація ниркових пірамід верхнього кінця нирки: верхня медіальна, верхня латеральна, верхня передня, верхня задня, передня верхня медіальна, передня верхня латеральна, задня верхня медіальна, задня верхня латеральна піраміда. Запропонована класифікація ниркових пірамід може бути використана як для вивчення просторового розташування ниркових пірамід, так і для дослідження морфометричних параметрів окремих пірамід, а також для вироблення найбільш раціональної тактики хірургічного лікування при плануванні органозберігаючих операцій на нирці.
Ключові слова: нирки, ниркові піраміди, класифікація пірамід, морфометричні характеристики.

Кафедра оперативної хірургії та топографічної анатомії

Харківский національний медичний університет

Дуденко В.Г., Вдовиченко В.Ю. Топографо-морфометрические характеристики пирамид верхнего конца почки человека зрелого и пожилого возраста.

Реферат. Для исследования морфометрии и пространственного расположения пирамид почки человека стандартными методами анатомического исследования были изучены 150 почек людей зрелого и пожилого возраста обоих полов. Для определения топографии была применена система топографических координат, адаптированная для оценки секторной координатной топографии почечных пирамид в локальной системе координат почки человека. Была предложена следующая классификация почечных пирамид верхнего конца почки: верхняя медиальная, верхняя латеральная, верхняя передняя, верхняя задняя, передняя верхняя медиальная, передняя верхняя латеральная, задняя верхняя медиальная, задняя верхняя латеральная пирамида. Предложенная классификация почечных пирамид может быть использована как для изучения пространственного расположения почечных пирамид, так и для исследования морфометрических параметров отдельных пирамид, а также для выработки наиболее рациональной тактики хирургического лечения при планировании органосохраняющих операций на почке.

Ключевые слова: почки, почечные пирамиды, классификация пирамид, морфометрические характеристики.

Кафедра оперативной хирургии и топографической анатомии Харьковский национальный медицинский университет

Dudenko V.G., Vdovichenko V. I. Topographo-morphometric characteristics of the human renal pyramids of the upper end at mature and elderly ages.

Abstract. Background. 150 kidneys of human in mature and elderly age of both sexes died after accidents or with diseases not associated with the pathology of the urinary system were used to study topography and morphometry of the upper end of the pyramids of the kidney. Next indicators of renal pyramids were examined: diameter of the base of renal pyramid, the diameter of the renal papilla, the height of the renal pyramids, the volume of renal pyramids. Methods. Standard methods of anatomical study was used: preparation, macroscopy, morphometry of native kidneys, morphometry of renal pyramids in upper end based on plane-parallel topographical anatomical sections of kidney, comparative digital morphometry based on digital calibrated plane-parallel topographical anatomical sections of the upper end of the kidney, statistical processing and mathematical analysis of the data obtained. Results. It was found 634 pyramids in the upper end of 150 kidneys. There were found from 3 to 8 renal pyramids in the upper end of kidney, an average of 4.22±0.15. All pyramids structurally divided into two groups: 1) single (solitary), which independently form the renal papilla and drain into a minor renal calyces; 2) group (fusion), a compound of two or more single renal pyramids or large renal pyramids that looked split, since the renal papilla. Number of single renal pyramids from 3 to 8, on average (4.0±0.54). Number of group renal pyramids from 0 to 4, an average (2.0 ± 0,65). Depending on the drain place in the minor renal calices and the location in renal parenchima all pyramids were classified as follows: pyramids of the superior minor renal calyces: superior medial pyramid, superior lateral pyramid, anterior superior pyramid, posterior superior pyramid; pyramids of anterior superior minor renal calyces: anterior superior medial pyramid, anterior superior lateral pyramid; pyramids of the posterior superior renal calyces: posterior superior medial pyramid, posterior superior lateral pyramid. Constant superior medial pyramid (pms) - the largest significantly more than any other pyramids for all measured parameters (diameter of the base, the diameter of the renal papilla, height and volume of the pyramid). Commonly found superior lateral pyramid (pls) – has less than the previous in diameter of the base, the diameter of the renal papilla and height, but more in height. Superior anterior pyramid (pas) and superior posterior pyramid (pps) – commonly found, all parameters less than the previous two pyramids, average values ​​of parameters differ slightly. Anterior superior lateral pyramid (plsa) and posterior superior lateral pyramid (plsp) - rare pyramids, all parameters less than the previous two pyramids, average values ​​of the parameters differ slightly. Anterior superior medial pyramid (pmsa) and posterior superior medial pyramid (pmsp) - rare pyramids, all parameters less than the previous two pyramids, the average values ​​of the parameters differ slightly. Conclusion. Perspective study the topography of the upper end of the human renal pyramids on the basis of the proposed classification based on their location in relation to the renal sector and parallels. Also, the classification of the pyramids, tied to small renal cups can also be used for other parts of the kidney.

Key words: kidney, renal pyramids, classification of pyramids, morphometric characteristics.

Department of the operative surgery and topographic anatomy Kharkiv national medical university

Background. Last years clinical practice is widely implemented new methods of investigation of urological patients like angiography, infusion urography, scan, ultrasound, CT and MRI, which made it possible to objectify the indications for nephron-sparing surgery such as nephrotomy and partial nephrectomy. [1-6]. On the other hand, new methods of surgical treatment of diseases of the kidneys, which are carried out with the endoscopic instruments still cause complications, which also requires further deepening and generalization of knowledge about the peculiarities of the topographo-anatomical structure of human kidney [7-10].

Objective. The aim of the study was determination of the characteristics of the individual anatomy and topography of the upper end of the renal pyramids in the topographic coordinates system.

Methods. Morphological material for the study were 150 human kidney mature and elderly of both sex. All cases were associated with death from accidents or diseases not associated with the pathology of the urinary system.

The following morphometric characteristics of the renal pyramids on a range of one- and two-dimensional parameters were investigated: height of renal pyramids (hpr), the diameter of the base of the renal pyramids (Dpr), the diameter of the renal papilla (dpr), the volume of renal pyramids (vpr).

To achieve the goal and the decision of tasks on the basis of the research we have shown improvement methods developed an original technique topometry according kidney spatial computer models that allows to study the position and size of internal renal anatomical structures in the system of topographic coordinates. To determine the topography of the renal pyramids of the upper end in the horizontal plane was used geo-topographic coordinate system by MP Burykh [7,8].

Results. In the upper end of the human kidney were found ftom 3 to 8 pyramids, which open to the superior, anterior superior and posterior superior small renal calyx, which allowed to classify the kidney pyramids of the upper end depending on their location and the confluence of the small renal calyx (MUF).

In the superior renal calyx open: 1) the superior medial pyramid (pms); 2) the superior lateral pyramid (pls); 3) the superior anterior pyramid (pas); 4) the superior posterior pyramid (pps).

In the anterior superior renal calyx open: 1) the anterior superior medial pyramid (pmsa); 2) the anterior superior lateral pyramid (plsa).

In the posterior superior renal calyx open: 1) the posterior superior medial pyramid (pmsp); 2) the posterior superior lateral pyramid (plsp) (Figure 1).

Fig. 1. The three-dimensional computer anatomical model of the renal pyramids and calico-pelvic complex according to the images of serial sections of isolated kriofixed left kidney, front view. Calico-pelvic complex is injected. Male, 38 years old. 1 – superior anterior pyramid (pas), 2 – superior medial pyramid (pms), 3 – superior lateral pyramid (pls), 4 – superior posterior pyramid (pps), 5 – group pyramid, consisting of the anterior superior medial and anterior superior lateral pyramids (pmsa + plsa), 6 – posterior superior lateral pyramid (plsp), 7 – anterior superior medial (portal) pyramid (ppmsa), 8 – posterior superior medial (portal) pyramid (ppmsp), 9 – group pyramid, consisting of the anterior inferior medial (portal) and the posterior inferior medial (portal) pyramids (ppmia + ppmip), 10 – group pyramid, consisting of the anterior inferior lateral and posterior inferior lateral pyramids (plia + plip), 11 – inferior posterior pyramid (ppi), 12 – inferior medial pyramid (pmi), 13 – inferior anterior pyramid (pai).

The upper medial pyramid (pms) was present in 98.0%; in 42.17% cases this pyramid is merged with pas (53.22%) or pps (46.78%). The diameter of its base (Dpms) varied in the range 10,3-28,4 mm, average 17,8±0,77 mm. The diameter of the renal pyramid papilla (dpms) varied in the range 1.5-7.5 mm, average 3,77±0,18 mm. The height of the pyramid (hpms) varied in the range 6,8-16,8 mm, average 11,28±0,54 mm. The volume of the pyramid (vpms) varied in the range 0,319-2,469 mm3, average 1,233±0,123 mm3.

Superior lateral pyramid (pls) was present in 70.0%; in 39.42% cases this pyramid is merged with pas (41.47%) or pps (58.53%). The diameter of its base (Dpls) varied in the range 8,3-25,5 mm, average 16,85±0,82 mm. The diameter of the renal pyramid papilla (dpls) varied in the range 1,8-6,8 mm, average 3,75±0,18 mm. The height of the pyramid (hpls) varied in the range 7,3-19,1 mm, average 11,47±0,57 mm. The volume of the pyramid (vpls) varied in the range 0,237-2,271 mm3, average 1,148±0,056 mm3.

Superior anterior pyramid (pas) was present in 62.66%; in 71.27% cases this pyramid merged: with pms in 49.25%, with pls in 25.37% and with pps in 25.37%. The diameter of its base (Dpas) varied in the range 7,4-24,6 mm, average 15,57±0,778 mm. The diameter of the renal pyramid papilla (dpas) varied in the range 2,1-6,3 mm, average 3,63 ± 0,18 mm. The height of the pyramid (hpas) varied in the range 7,7-17,7 mm, average 10,96±0,54 mm. The volume of the pyramid (vpas) varied in the range 0,213-2,515 mm3, average 0,971±0,077 mm3.

Superior posterior pyramid (pps) was present in 68.66%; in 67.96% cases this pyramid merged: with pms in 41.42%, with pls in 34.29% and with pas in 24.29%. The diameter of its base (Dpps) varied in the range 7,6-24,7 mm, average 15,58±0,7 mm. The diameter of the renal pyramid papilla (dpps) varied in the range 1,5-6,3 mm, average 3,52±0,17 mm. The height of the pyramid (hpps) varied in the range 6,2-18,2 mm, average 10,95±0,53 mm. The volume of the pyramid (vpps) varied in the range 0,215-2,268 mm3, average 0,937±0,091 mm3.

Anterior superior medial pyramid (pmsa) was present in 18.0%; in 18.51% cases this pyramid merged with plsa. The diameter of its base (Dpmsa) varied in the range 8,3-16,2 mm, average 13,14±0,78 mm. The diameter of the renal pyramid papilla (dpmsa) varied in the range 2,1-5,5 mm, average 3,15±0,15 mm. The height of the pyramid (hpmsa) varied in the range 6,4-13,8 mm, average 10,17±0,49 mm. The volume of the pyramid (vpmsa) varied in the range 0,194-0,994 mm3, average 0,622±0,025 mm3.

Anterior superior lateral pyramid (plsa) was present in 43.33%; in 7.69% cases this pyramid merged with pmsa. The diameter of its base (Dplsa) varied in the range 8,7-24,3 mm, average 13,69±0,58 mm. The diameter of the renal pyramid papilla (dplsa) varied in the range 2,2-6,3 mm, average 3,37±0,16 mm. The height of the pyramid (hplsa) varied in the range 6,7-19,1 mm, average 10,89±0,48 mm. The volume of the pyramid (vplsa) varied in the range 0,222-1,707 mm3, average 0,719±0,143 mm3.

Posterior superior medial pyramid (pmsp) was present in 16.66%; in 44% cases this pyramid merged with plsp. The diameter of its base (Dpmsp) varied in the rang 10,0-17,1 mm, average 13,66±0,75 mm. The diameter of the renal pyramid papilla (dpmsp) varied in the range 2,0-5,3 mm, average 3,3±0,17 mm. The height of the pyramid (hpmsp) varied in the range 6,2-13,3 mm, average 10,13±0,49 mm. The volume of the pyramid (vpmsp) varied in the range 0,201-0,951 mm3, average 0,646±0,089 mm3.

Posterior superior lateral pyramid (plsp) was present in 46.0%; in 15.94% cases, this pyramid merged with pmsp. The diameter of its base (Dplsp) varied in the range 7,9-26,3 mm, average 13,99±1,02 mm. The diameter of the renal pyramid papilla (dplsp) varied in the range 1,5-6,3 mm, average 3,33±0,15 mm. The height of the pyramid (hplsp) varied in the range 7,2-16,8 mm, average 10,65±0,58 mm. The volume of the pyramid (vplsp) varied in the range 0,219-1,999 mm3, with an average 0,750±0,014 mm3.

Conclusion. Based on the study of anatomical material we proposed a classification of the upper end of the kidney of the pyramids, which implies the presence of 8 pyramids: superior medial, superior lateral, superior anterior, superior posterior, anterior superior medial, anterior superior lateral, superior posterior medial and superior posterior lateral.

According to the results of the macroscopic study we have identified two main forms of renal pyramids: single (solitary) and group (drain). Single pyramid form independently renal papilla and open into the renal calyx. Group are fused at the papilla single pyramid, or pyramid, which, due to splitting seem separate.

Constant superior medial pyramid pms - the largest, significantly more than any other pyramid in all measured parameters (base diameter, the diameter of the renal papilla, height and volume of the pyramid). A common superior lateral pyramid pls - less than the previous base on the diameter, the diameter of the renal papilla and height, but more in height. Superior anterior pyramid pas and superior posterior pyramid pps - common in all parameters is less than the previous two, on the average values ​​of the parameters differ slightly. Anterior superior lateral pyramid plsa and posterior superior lateral pyramid plsp - rare pyramid, on all parameters is less than the previous two, on the average values ​​of the parameters differ slightly. Anterior superior medial pyramid pmsa and posterior superior medial pyramid pmsp - rare pyramid, on all parameters is less than the previous two, on the average values ​​of the parameters differ slightly.

We believe a promising study the topography of the upper end of human renal pyramids on the basis of the proposed classification based on their location in relation to the renal sector and parallels. Also, the classification of the pyramids, tied to small renal cups can also be used for other parts of the kidney.



References:

  1. Maturen K.E., Nghiem H.V., Caoili E.M., Higgins E.G. et al. Renal mass core biopsy: accuracy and impact on clinical management. Roentgenology.2007;188(2):563-570.

  2. Hunter S., Samir A., Eisner B., Gervais D., Maher M. et al. Diagnosis of renal lymphoma by percutaneous image guided biopsy: experience with 11 cases. Urology.2006;176(5):1952-1956.

  3. Mariani A.J. Combined electrohydraulic and holmium: YAG laser ureteroscopic nephrolithotripsy of large (greater than 4 cm) renal calculi. Urology.2007;177(1):168-173.

  4. Hagspiel K.D., Kandarpa K., Silverman S.G. Interactive MR-guided percutaneous nephrostomy. Magn.Reson.Imaging.1998;8(6):1319-1322.

  5. Salagierski M., Salagierski M., Salagierska-Barwinska A., Sosnowski M. Percutaneous ultrasound-guided radiofrequency ablation for kidney tumors in patients with surgical risk. Urology.2006;13(11):1375-1379.

  6. Jenne J.W., Divkovic G., Rastert R., Debus J., Huber P.E. Focused ultrasound surgery. Basics, current status, and new trends. Radiologe.2003;43(10):805-812.

  7. Burykh M. Topographic approach to the study of the Human Body. Clinical Anatomy.2004;17:423-428.

  8. Burykh M., Goryainova G., Shklar S., Luchshev P., Voroschuk R. [Truly topographical approach in the clinical anatomy.] Clinical informatics and telemedicine.2005;2:245-248. Russian.

  9. Burykh M., Zinchenko V., Mihalin M. [Topography of human renal excretory sectors.] Actual questions of morphology.1990;3:44-45. Russian.

  10. Burykh MP, Zinchenko VD, Shust VA. [Analysis of quantitative and spatial organization of pyramidal-calico-pelvic system of human kidney]. In: [Proceedings of the Xth Union Congress of Anatomists, Histology and Embryology; 1995; Poltava, Ukraine]. 1995. p.61. Russian.


База даних захищена авторським правом ©uchika.in.ua 2016
звернутися до адміністрації

    Головна сторінка