Зазначені вище результати дозволяють перейти до графічного зображення результатів кластерного аналізу на рис 3.9.:

Рис. 3.9. Графічне зображення побудови кластерів
З діаграми побудованого дерева видно, що був виконаний поділ на 3 класи, що визначає поділ регіонів на енергоємні, середні та мало споживаючі групи.
Використання методу к-середніх одного з найбільш популярних методів кластеризації зазначене на рис. 3.10. Алгоритм є модифікацією EM -алгоритму для розподілу. Він розбиває множину елементів векторного простору на заздалегідь відоме число кластерів k , як зазначено на рис. 3.11. Дія алгоритму така, що він прагне мінімізувати дисперсію на точках кожного кластера.
Рис. 3.10. Вибір метода кластеризації
Основна ідея полягає в тому, що на кожній ітерації перерозраховується центр мас для кожного кластера, отриманого на попередньому кроці, потім вектори розбиваються на кластери знову відповідно до того, який з нових центрів виявився ближче по выбраной метриці. Алгоритм завершується, коли на якійсь ітерації не відбувається зміни кластерів.
Рис. 3.11. Задання числа кластерів
В результаті отримали вікно з результатами зазначене на рис. 3.12. де видно, що попередньо було задано 3 кластери та 5 змінних:
Рис. 3.12. Вікно з результатами
Цей метод кластеризації дозволяє також отримати додаткову інформацію стосовно середніх значень по об’єктах ,які зазначені на рисунку 3.13. та евклідової відстані між центрами кластерів зазначеної на рисунку 3.14.:
Рис. 3.13. Результати середніх значень по об’єктах |