Реферат Комп’ютерні мережі Модель взаємодії




Скачати 456,49 Kb.
Сторінка1/2
Дата конвертації10.06.2018
Розмір456,49 Kb.
  1   2
Реферат

Комп’ютерні мережі



  1. Модель взаємодії відкритих систем ISO/OSI

Еталонна модель OSI являє собою 7-рівневу мережеву ієрархію, яка описує процес передачі даних між мережевими пристроями, розроблену ISO. Слід зауважити, що модель не забезпечує процесу передачі даних, а лише описує, або моделює його. Фактично, ця модель містить в собі 2:



  • горизонтальну модель на базі протоколів, яка забезпечує механізм взаємодії програм та процесів на різних мережевих пристроях;

  • вертикальну модель на основі послуг, які забезпечуються сусідніми рівнями один одному на одному мережевому пристрої.

В горизонтальній моделі двом програмам необхідна наявність спільного протоколу для обміну даними. У вертикальній сусідні рівні обмінюються даними з допомогою інтерфейсів.

Рис. 1 Еталонна модель взаємодії ISO/OSI.


Зв’язки між парними рівнями моделі OSI є віртуальними – кожен рівень взаємодіє з парним йому лише з допомогою сусідніх, а не напряму. Але ця взаємодія є прозорою, тобто невидимою для кожного конкретного рівня.

Фізичний рівень отримує дані від канального і перетворює їх у оптичні або електричні сигнали, які відповідають 0 і 1 бінарного потоку. Ці сигнали посилаються через середовище передачі на приймаючий вузол. Механічні і електричні/оптичні властивості середовища передачі даних визначаються на фізичному рівні та включають в себе:



  • типи кабелів і роз’ємів;

  • розводку контактів у роз’ємах;

  • схему кодування сигналів для значень 0 і 1.

Канальний рівень забезпечує створення, передачу та прийом ПБД канального рівня - кадрів (Frame). Цей рівень обслуговує запити мережевого рівня і використовує сервіс фізичного рівня для прийому і передачі кадрів. Стандарти ISO ділять канальний рівень на 2 підрівні: підрівень управління логічним каналом (Logical Link Control, LLC), який забезпечує взаємодію із мережевим рівнем і не залежить від конкретної технології, яка використовується, та підрівень контролю доступу до середовища (Media Access Control, MAC), який регулює доступ до розділюваного фізичного середовища і залежить від конкретної реалізації мережі.

Мережевий рівень відповідає за логічну адресацію учасників обміну інформацією та маршрутизацію – вибір оптимального шляху між учасниками обміну інформацією. ПБД мережевого рівня є пакет (packet).

Транспортний рівень ділить потоки інформації на такі ПБД як сегменти (segment), а також відповідає за надійну і достовірну передачу інформації та за контроль потоку даних.

Сеансовий рівень відповідає за організацію сеансів обміну даними між кінцевими машинами. Функції сеансового рівня забезпечуються протоколами, які є складовою частиною функції всіх трьох верхніх рівнів.

Представницький рівень відповідає за можливість діалогу між додатками на різних вузлах. Цей рівень забезпечує перетворення даних (компресія, кодування) прикладного рівня у потік інформації для транспортного рівня.

Прикладний рівень відповідає за доступ додатків користувача до мережі. Завданнями цього рівня є передача файлів, обмін поштовими повідомленнями та керування мережею.

Кожен рівень надає сервіси (послуги) верхньому сусідньому рівню і користується сервісами, наданими йому нижнім рівнем. Прикладний рівень надає сервіси безпосередньо додаткам користувача. Кожен рівень моделі OSI у процесі передачі інформації взаємодіє із 3-ма рівнями: сусіднім верхнім, сусіднім нижнім та парним йому рівнем іншого пристрою.

Процес передачі інформаційних блоків з верхнього рівня на нижній супроводжується інкапсуляцією (encapsulation) – формуванням ПБД кожного рівня з додаванням відповідної службової інформації у вигляді заголовків (header) та кінцівок (trailer). При цьому ПБД верхнього рівня із всією службовою інформацією є лише даними для нижнього рівня.




  1. Системи телеобробки. Принципи побудови систем телеобробки

Системи телеобробки – це сукупність технічних та програмних засобів, призначених для обробки даних, що передаються каналами зв’язку. Структура систем телеобробки:



Абонентські системи підключаються до основної ЕОМ за допомогою каналу зв’язку (КЗ). КЗ складається з:

  1. ліній зв’язку (ЛЗ);

  2. апаратури передачі даних (АПД).

АПД перетворює відповідні сигнали на формат, необхідний для передачі лінями зв’язку. КЗ складається з кінцевого обладнання даних, яке передає та приймає послідовність біт та апаратури передачі даних, що забезпечує передачу даних.

Абонентські ЕОМ взаємодіють з АП через АПД. Мультиплексом передачі даних (МПД) забезпечує підключення до основної ЕОМ певної кількості абонентських систем, який містить засоби для обміну даними між ЕОМ та підсистемою передачі даних. Всі функції систем телеобробки забезпечуються відповідними програмними засобами.

В системах СТО існують наступні види зв’язків:


  1. виділені або некомутовані – обслуговують одного клієнта

  2. комутовані

В якості КЗ використовуються автоматичні телефонні станції (АТС). Для створення СТО потрібні наступні засоби:

  1. Підсистема передачі даних

  2. Абонентський пункт

  3. Пристрої спряження ЕОМ з АПД

  4. Віддалені мультиплекс ори передачі даних (МПД).

Взаємодія ЕОМ та кінцевого обладнання організовується за допомогою передачі блоків даних, які передаються у вигляді потоку даних. Повідомлення, які містять структуру для забезпечення представленої в них певної службової інформації, яка необхідна для ідентифікації окремих пакетів, називаються повідомленнями з певним кодуванням для забезпечення передачі по КЗ.

Процедури, які виконує СТО:



  • передача файлів

  • дистанційне управління обчислювальних процесів

Функції СТО:

  1. ввід інформації з віддаленого абонентського пункту

  2. перетворення інформації в зручний для передачі вигляд

  3. передача даних

  4. ввід інформації у віддалену систему

  5. обробка інформації та зворотній цикл

Види існуючих СТО:

  1. Системи збору інформації

  2. Інформаційно-довідникові системи

  3. Інформаційно-управляючі системи

  4. Системи реального часу

  5. Системи колективного використання




  1. Процес інкапсуляції. Фізичний рівень моделі OSI

Пристрої фізичного рівня працюють виключно з електричними, світловими або електромагнітними сигналами. Вони приймають вхідний сигнал, при необхідності можуть підсилювати його, ресинхронізувати, очищати від шумів та передавати далі незалежно від його змісту та необхідності такої передачі. Пристрої фізичного рівня не проводять аналізу трафіку, вони працюють лише з сигналами.

Пристрої фізичного рівня поділяються на активні та пасивні. До перших належать:


  • трансивери (прийомопередавачі)

  • повторювачі

  • концентратори

Активні пристрої, як правило, виконують певні операції з сигналом, тобто можуть підсилювати його або перетворювати з одного виду в інший. Для цього вони вимагають наявності зовнішнього джерела живлення. Пасивні елементи просто передають сигнал без будь-яких змін у ньому.

До пасивних компонентів фізичного рівня відносять:



  • кабелі

  • розетки

  • штекери

  • патч-панелі

Патч-панель являє собою набір мережевих розеток, жорстко закріплених у єдиному корпусі. Як правило, вона розміщується у кросовій шафі або кімнаті і служить для полегшення прокладання та подальшої експлуатації кабельної системи мережі.

Трансивер (transceiver, TRANSmitter-reCEIVER) може конвертувати сигнал з однієї форми в іншу, тобто служити конвертором середовища. Крім використання у якості зовнішнього пристрою, трансивери входять до складу мережевих карт у якості сигнальної компоненти – вони кодують сигнал із вигляду, у якому він обробляється комп’ютером, у вигляд, у якому він передається мережею. Повторювач (repeater) підсилює та ресинхронізує сигнал, що дозволяє збільшувати відстань між відправником та отримувачем повідомлень у мережі. Як правило, це двопортові пристрої (1 вхід – 1 вихід). Вони не здійснюють ніяких операцій над трафіком.

Концентратор (hub) ще інколи називають багатопортовим повторювачем завдяки тому, що функції його нічим не відрізняються від попереднього пристрою. Єдина відмінність концентратора полягає в тому, що він, як правило, має більше ніж 2 порти – 5, 8, 12, 24 або навіть 48.

Концентратори можна також умовно розбити на певні групи:



  • активні – вони можуть регенерувати сигнали у мережі завдяки наявності зовнішнього джерела живлення, а значить, і збільшувати шлях проходження сигналу по середовищу;

  • пасивні – служать лише для організації фізичної зіркової топології і не підсилюють сигнал, не збільшуючи відстань від відправника до отримувача;

  • програмовані (intelligent) – мають консольні порти і можуть бути запрограмовані для управління мережевим трафіком;

  • непрограмовані (dumb) – не володіють можливостями управління трафіком; приймають сигнал на вхідному порті і передають його на всі інші порти крім вхідного без змін.

Більшість концентраторів, що використовуються на даний момент у мережах, є активними непрограмованими і працюють за їх алгоритмом.


  1. Проблема ефективного використання апаратних ресурсів

З появою недорогих та доступних ПК обчислювальна техніка почала широко використовуватись в усіх галузях людської діяльності. Всі, починаючи від невеликих комерційних компаній до промислових гігантів та державного апарату, використовують комп’ютерну техніку.

Розглянемо проблему ефективного використання ресурсів комерційної компанії А, що має свої філіали в кількох країнах, кожен філіал має 5 відділів. В процесі роботи компанії виникають дві проблеми:


  1. дублювання обладнання

Кожен з відділів повинен мати своє периферійне обладнання.

  1. обмін інформацією між підрозділами

інвестування фінансових коштів в комп’ютерну мережу покликано вирішити ці проблеми. Компанія може використовувати один комплект периферійного обладнання, обмін інформацією між підрозділами можливий з використанням комп’ютерної мережі за довільними протоколами.


  1. Розподіленні системи. Поняття та визначення

Розподілені системи – це комплекс програмних та апаратних засобів, що здійснюють обробку інформації децентралізовано. Комп’ютери, що здійснюють таку обробку називаються станціями телеобробки.

Комп’ютерні мережі відносяться до розподілених (або децентралізованих) обчислювальних систем. Оскільки основною ознакою розподіленої обчислювальної системи є наявність кількох центрів обробки даних, існує ще кілька видів таких систем.

Мультипроцесорний комп’ютер містить кілька процесорів, кожен із яких може відносно незалежно від решти виконувати свою програму. Спільна для всіх операційна система оперативно розподіляє навантаження між процесорами, а взаємодія між ними здійснюється через спільну оперативну пам’ять.

Мультипроцесорний комп´ютер не підтримує територіальної розподіленості, але його перевагами є висока продуктивність, яка досягається за рахунок паралельної роботи кількох процесорів та відмовостійкість – за рахунок надлишковості.

Багатомашинна система – це обчислювальний комплекс, який включає у себе декілька комп´ютерів (кожен із яких працює під керуванням власної ОС), а також програмні та апаратні засоби зв´язку комп´ютерів, які забезпечують роботу всього комплексу як єдиного цілого.

Порівняно із мультипроцесорними системами можливості паралельної обробки у багатомашинних системах обмежені – зв´язок між комп´ютерами менш тісний, ніж між процесорами. Апаратні та програмні зв´язки між обробляючими пристроями менш тісні. Територіальна розподіленість також не забезпечується, оскільки відстані між комп´ютерами визначаються довжиною зв´язку між процесорним блоком та дисковою підсистемою.

У обчислювальних мережах програмні та апаратні зв´язки є ще більш слабкими, а автономність обробляючих блоків проявляється максимальним чином – основними елементами мережі є стандартні комп´ютери, які не мають ні спільних блоків пам´яті, ні спільних периферійних пристроїв. Взаємодія відбувається за рахунок передачі повідомлень через мережеві адаптери та канали зв´язку.




  1. Канали зв’язку. Класифікація, типи

Основними характеристиками каналу зв’язку є:



  1. Пропускна здатність

  2. Достовірність передачі інформації

Пропускна здатність обчислюється граничним числом біт, яке може бути передано через лінію зв’язку за певну одиницю часу.

Достовірність передачі даних характеризується ймовірністю спотворення біта для певного КЗ.

ЛЗ поділяються на два типи: дротові та бездротові. Дротові поділяються на кабельні та оптоволоконні системи. Бездротові поділяються на канали наземного та супутникового зв’язку.

Основними характеристиками ЛЗ є:



  1. смуга частот

  2. питома вартість

  3. завадостійкість

Смуга частот визначається як різниця верхньої та нижньої частот. Вона залежить від типу ліній зв’язку та їх характеристик.

Пропускна здатність КЗ залежить:



  1. від смуги частот, що використовуються на каналі

  2. від співвідношення «сигнал-шум»

Через обмеження смуги частот в КЗ необхідно узгоджувати сигнали, що передаються по цих лініях. Таке узгодження можливе:

  1. за допомогою модуляції сигналу

  2. за допомогою кодування сигналу

Модуляція – це перенесення сигналу на задану частоту з метою запобігання затухання та зміни форми сигналу, що пов’язане з впливом середовища передачі даних.

Кодування – це перетворення даних у вигляд, що забезпечує його безпомилкову передачу. Це забезпечується шляхом введення надлишковості в інформацію, що передається. Кодування використовується більш інтенсивно у випадку роботи з комутованим з’єднанням.

В залежності від напрямку передачі даних КЗ поділяють на такі типи:


  1. Симплексні – передача можлива лише в одному напрямку.

  2. Напівдуплексні – передача в двох напрямках, але розділена в часі.

  3. Дуплексні – можлива одночасна передача в двох напрямках.




  1. Топології локальних мереж: фізичні та логічні

Фізична топологія – це граф, вершинами якого є вузли мережі, а ребрами – фізичні зв’язки між ними. Логічна топологія описує, як циркулюють потоки інформації між вузлами. Фізична і логічна топологія мережі можуть не співпадати між собою. Фактично логічна топологія визначає алгоритм, згідно із яким мережеві вузли будуть отримувати доступ до середовище передачі даних (буде описано далі).



Визначають наступні фізичні топології:

  • шинна топологія



У цій топології всі вузли під’єднані безпосередньо до мережевого середовища. Зараз така топологія використовується досить рідко через значні недоліки – фізичний розрив між будь-якими вузлами призводить до непрацездатності всієї мережі. Реалізовувалася на коаксіальному кабелі.

  • кільцева топологія



Володіє тими ж недоліками, що і шинна, а тому на практиці реалізовується неявно. При явній реалізації вихід з ладу будь-якого вузла або зв’язку між ними призводить до непрацездатності мережі.

  • зіркова топологія



У цій топології існує центральний вузол, до якого під’єднуються всі інші вузли. Це дозволяє підтримувати працездатність мережі у випадку виходу з ладу окремого кінцевого вузла або каналу між вузлами. Мережа перестає працювати лише у випадку виходу з ладу центрального вузла. Залежно від його природи зіркову топологію у деяких випадках можна розглядати як вироджену шину – тобто центральний вузол являє собою спільне розділюване середовище, до якого всі інші намагаються отримати доступ.



  • розширена зірка

Являє собою ту ж зірку, кожен кінцевий вузол якої служить центральним вузлом для іншої зірки. Одна з найчастіше використовуваних на практиці топологій на даний час. Володіє всіма перевагами зіркової топології; крім того, якщо з ладу виходить центральний вузол, мережа розпадається на кілька незалежних працездатних мереж.

  • деревовидна топологія



  1   2


База даних захищена авторським правом ©uchika.in.ua 2016
звернутися до адміністрації

    Головна сторінка