де S – чутливість фотоприймача; – кут між напрямком падаючого випромінювання і нормаллю до фоточутливого елемента; – азимутальний кут.
Коефіцієнт фотоелектричного зв'язку багатолементного фотоприймача Кф.с – відношення напруги сигналу з неопроміненого елемента в багатоелементному фотоприймачі до напруги фотосигналу із сусіднього опроміненого елемента, визначене на лінійній ділянці енергетичної характеристики і при робочій напрузі на всіх елементах.
РОЗДІЛ 1. ОСНОВНІ ТИПИ ФОТОПРИЙМАЧІВ
ФОТОРЕЗИСТОРИ
Фоторезистори є найбільш простим типом приймачі випромінювання. Їхня дія заснована на явищі фотопровідності. Для виготовлення Фоторезисторів застосовуються напівпровідникові матеріали у вигляді полікристалічних плівок, пресованих таблеток, монокристалічних пластинок. Використовується фоточутливість матеріалів як в області власного поглинання, так і в примістній області. Схематична конструкція фоторезистора з омічними струмовідвідними контактами показана на мал.1.1
М ал.1.1. Схематична конструкція фоторезистора.
До переваг фоторезисторів варто віднести відносну дешевину виготовлення, ширину номіналів опорів ,що перекриваються, простоту виконання фоточутливих елементів із складною конфігурацією, а також високу технологічну сумісність із порошковими і плівковими електролюмінесцентними випромінювачами. Недоліками фоторезисторів є значна інерційність, температурна і тимчасова нестабільність характеристик.
ФОТОДІОДИ
О сновним елементом фотодіода (ФД) є p-n-перехід. При освітленні його відбувається генерація електронно-діркових пар. Електричне поле переходу розділяють незрівноважені носії заряду. Струм, утворений цими носіями, збігається за напрямом з оберненим струмом p-n-переходу. p-n-перехід як фотоприймач застосовується в двох режимах – фотодіодному і режимі генерації фото-ЕРС (вентильному) (мал. 1.2). У першому випадку на діод подається обернена напруга і струм через структуру є функцією інтенсивності світла. В другому випадку p-n-перехід сам використовується в якості джерела ЕРС або струму.
Мал. 1.2. Схеми вмикання діода у фотодіодному (а) і фотовентильному (б)
режимах
Фотодіодний режим використання p-n-переходів і інших аналогічних структур має визначені переваги по відношенню до фотовентильного: висока швидкодія, краща стабільність характеристик, великий динамічний діапазон лінійності характеристик, підвищена фоточутливість у довгохвильовій області. Недолік фотодіодного режиму пов'язаний із темновим струмом, що проходить через прилад при оберненому зсуві за відсутності випромінювання. В опорі навантаження створюється напруга зсуву, значення котрої експоненціально залежить від температури. Надлишковий шум і шум, обумовлений температурними коливаннями напруги зсуву, зникають, якщо діод знаходиться при нульовому зсуві. Тому фотовентильний режим може виявитися кращим від фотодіодного. Енергетичні характеристики фотоелементів близькі до лінійного при малих опорах навантаження і є логарифмічними (залежність фотовідповіді від інтенсивності засвітки) при великому навантаженні.
Т ипова структура фотодіода і його вольт-амперна характеристика (ВАХ) показані на мал. 1.3.
Мал.1.3 ВАХ фотодіода (a) і його структурна схема (б).
Оцінимо розмір фотоструму для простого випадку, коли випромінювання поглинається в n-області і інтенсивність світла постійна по товщині ( << 1). Тут – ширина бази. При оберненому зсуві процес переносу генерованих світлом носіїв заряду не відрізняється від переносу зрівноважених носіїв в n-базі. Для визначення фотоструму можна скористатися формулою для оберненого струму p-n-переходу, яка для випадку pp>>nn має вигляд:
Поділіться з Вашими друзьями: |