Реферат на тему: Початки комбінаторики


Перестановки з повтореннями



Сторінка3/10
Дата конвертації23.03.2017
Розмір0.77 Mb.
ТипРеферат
1   2   3   4   5   6   7   8   9   10

4. Перестановки з повтореннями


Означення. Перестановка з повтореннями по m елементів множини A={a1, a2, …, an} складу (k1, k2, …, kn) – це послідовність довжини m=k1+k2+…+kn, в якій елементи a1, a2, …, an повторюються відповідно k1, k2, …, kn разів.

Приклади.

1. При A={a, b, c} перестановками з повтореннями складу (1, 0, 2) є послідовності (a,c,c), (c,a,c), (c,c,a), складу (1, 1, 1) – (a,b,c), (a,c,b), (b,a,c), (b,c,a), (c,a,b), (c,b,a).

2. Нехай m різних кульок розкладаються по n різних ящиках так, що в першому ящику k1 кульок, у другому – k2 кульок, …, у n-му – kn кульок, причому m=k1+k2+…+kn. Пронумеруємо кульки від 1 до m, ящики – від 1 до n. Задамо розподілення кульок як функцію, яка ставить у відповідність номеру кульки номер ящика, куди вона потрапила. Отже, маємо послідовність довжини m=k1+k2+…+kn, в якій номери 1, 2, …, n повторюються k1, k2, …, kn разів відповідно. Очевидно, що така функція відповідає розкладу кульок взаємно однозначно. Таким чином, розклад подається як перестановка з повтореннями складу (k1, k2, …, kn).



Кількість перестановок з повтореннями з елементів множини A={a1, a2, …, an} складу (k1, k2, …, kn) позначається P(k1, k2, …, kn) і виражається формулою:

P(k1, k2, …, kn)=.

Доведемо її за допомогою математичної індукції за n.



1. База індукції. При n=2 будь-якій перестановці складу (k1, k2) взаємно однозначно відповідає підмножина тих номерів місць із {1, 2, …, k1+k2}, на яких розташовано елементи a1. Але ці підмножини є комбінаціями з k1+k2 по k1, і їх . Отже, P(k1, k2)=, і базу доведено.

2. Індукційний перехід. За припущенням індукції,



P(k1, k2, …, kn)=.

Поставимо довільній перестановці складу (k1, k2, …, kn, kn+1) у відповідність пару вигляду

(підмножина номерів місць, де розташовано елементи an+1,

перестановка з повтореннями решти елементів по інших місцях).

За принципом добутку та за припущенням індукції, кількість таких пар є



Оскільки очевидно, що відповідність між перестановками складу (k1, k2, …, kn, kn+1) та наведеними парами є взаємно однозначною, то правильність формули для P(k1, k2, …, kn) доведено.

За означенням, перестановки складу (k1, k2, …, kn) є послідовностями довжини m=k1+k2+…+kn, тобто розміщеннями з повтореннями окремого вигляду, а саме, з фіксованими кількостями елементів a1, a2, …, an. Таким чином, послідовності чисел (k1, k2, …, kn), таких, що k1+k2+…+kn=m, взаємно однозначно відповідає підмножина множини розміщень. Перебираючи всі можливі послідовності чисел (k1, k2, …, kn), ми перебираємо всі можливі розміщення.

Наведені неформальні міркування демонструють зв'язок між перестановками й розміщеннями з повтореннями та обгрунтовують формулу:



nm=.


Каталог: uploads -> doc
doc -> Методичні рекомендації для проведення І (районного) етапу всеукраїнського конкурсу «Учитель року 2015»
doc -> Наказ Державіаслужби від 14. 06. 2006 №416
doc -> Правила сертифікації суб’єктів аеропортової діяльності
doc -> Реферат на тему: Франсуа Вієт
doc -> Активність мікроорганізмів-азотфіксаторів у ґрунті західного
doc -> Вправ для навчання аудіювання
doc -> Сучасна практика підготовки баяністів
doc -> «історія розвитку поняття інтеграл»
doc -> Технологія концентрованого навчання дозволяє викладачеві урізноманітнити заняття за формами та методами
doc -> Сьомого скликання


Поділіться з Вашими друзьями:
1   2   3   4   5   6   7   8   9   10




База даних захищена авторським правом ©uchika.in.ua 2020
звернутися до адміністрації

    Головна сторінка